Abstract:Graphical User Interfaces (GUIs) are central to human-computer interaction, yet automating complex GUI tasks remains a major challenge for autonomous agents, largely due to a lack of scalable, high-quality training data. While recordings of human demonstrations offer a rich data source, they are typically long, unstructured, and lack annotations, making them difficult for agents to learn from.To address this, we introduce ShowUI-Aloha, a comprehensive pipeline that transforms unstructured, in-the-wild human screen recordings from desktop environments into structured, actionable tasks. Our framework includes four key components: A recorder that captures screen video along with precise user interactions like mouse clicks, keystrokes, and scrolls. A learner that semantically interprets these raw interactions and the surrounding visual context, translating them into descriptive natural language captions. A planner that reads the parsed demonstrations, maintains task states, and dynamically formulates the next high-level action plan based on contextual reasoning. An executor that faithfully carries out these action plans at the OS level, performing precise clicks, drags, text inputs, and window operations with safety checks and real-time feedback. Together, these components provide a scalable solution for collecting and parsing real-world human data, demonstrating a viable path toward building general-purpose GUI agents that can learn effectively from simply observing humans.
Abstract:Vision-Language Models (VLMs) have shown remarkable performance in User Interface (UI) grounding tasks, driven by their ability to process increasingly high-resolution screenshots. However, screenshots are tokenized into thousands of visual tokens (e.g., about 4700 for 2K resolution), incurring significant computational overhead and diluting attention. In contrast, humans typically focus on regions of interest when interacting with UI. In this work, we pioneer the task of efficient UI grounding. Guided by practical analysis of the task's characteristics and challenges, we propose FocusUI, an efficient UI grounding framework that selects patches most relevant to the instruction while preserving positional continuity for precise grounding. FocusUI addresses two key challenges: (1) Eliminating redundant tokens in visual encoding. We construct patch-level supervision by fusing an instruction-conditioned score with a rule-based UI-graph score that down-weights large homogeneous regions to select distinct and instruction-relevant visual tokens. (2) Preserving positional continuity during visual token selection. We find that general visual token pruning methods suffer from severe accuracy degradation on UI grounding tasks due to broken positional information. We introduce a novel PosPad strategy, which compresses each contiguous sequence of dropped visual tokens into a single special marker placed at the sequence's last index to preserve positional continuity. Comprehensive experiments on four grounding benchmarks demonstrate that FocusUI surpasses GUI-specific baselines. On the ScreenSpot-Pro benchmark, FocusUI-7B achieves a performance improvement of 3.7% over GUI-Actor-7B. Even with only 30% visual token retention, FocusUI-7B drops by only 3.2% while achieving up to 1.44x faster inference and 17% lower peak GPU memory.
Abstract:Building intelligent agents capable of dexterous manipulation is essential for achieving human-like automation in both robotics and digital environments. However, existing GUI agents rely on discrete click predictions (x,y), which prohibits free-form, closed-loop trajectories (e.g. dragging a progress bar) that require continuous, on-the-fly perception and adjustment. In this work, we develop ShowUI-$π$, the first flow-based generative model as GUI dexterous hand, featuring the following designs: (i) Unified Discrete-Continuous Actions, integrating discrete clicks and continuous drags within a shared model, enabling flexible adaptation across diverse interaction modes; (ii) Flow-based Action Generation for drag modeling, which predicts incremental cursor adjustments from continuous visual observations via a lightweight action expert, ensuring smooth and stable trajectories; (iii) Drag Training data and Benchmark, where we manually collect and synthesize 20K drag trajectories across five domains (e.g. PowerPoint, Adobe Premiere Pro), and introduce ScreenDrag, a benchmark with comprehensive online and offline evaluation protocols for assessing GUI agents' drag capabilities. Our experiments show that proprietary GUI agents still struggle on ScreenDrag (e.g. Operator scores 13.27, and the best Gemini-2.5-CUA reaches 22.18). In contrast, ShowUI-$π$ achieves 26.98 with only 450M parameters, underscoring both the difficulty of the task and the effectiveness of our approach. We hope this work advances GUI agents toward human-like dexterous control in digital world. The code is available at https://github.com/showlab/showui-pi.
Abstract:Recent video-language models have shown great potential for video understanding, but still struggle with accurate temporal grounding for event-level perception. We observe that two main factors in video understanding (i.e., temporal grounding and textual response) form a logical hierarchy: accurate temporal evidence grounding lays the foundation for reliable textual response. However, existing works typically handle these two tasks in a coupled manner without a clear logical structure, leading to sub-optimal objectives. We address this from a factorized learning perspective. We first propose D$^2$VLM, a framework that decouples the learning of these two tasks while also emphasizing their inherent dependency. We adopt a "grounding then answering with evidence referencing" paradigm and introduce evidence tokens for evidence grounding, which emphasize event-level visual semantic capture beyond the focus on timestamp representation in existing works. To further facilitate the learning of these two tasks, we introduce a novel factorized preference optimization (FPO) algorithm. Unlike standard preference optimization, FPO explicitly incorporates probabilistic temporal grounding modeling into the optimization objective, enabling preference learning for both temporal grounding and textual response. We also construct a synthetic dataset to address the lack of suitable datasets for factorized preference learning with explicit temporal grounding. Experiments on various tasks demonstrate the clear advantage of our approach. Our source code is available at https://github.com/nusnlp/d2vlm.
Abstract:Learning directly from human demonstration videos is a key milestone toward scalable and generalizable robot learning. Yet existing methods rely on intermediate representations such as keypoints or trajectories, introducing information loss and cumulative errors that harm temporal and visual consistency. We present Mitty, a Diffusion Transformer that enables video In-Context Learning for end-to-end Human2Robot video generation. Built on a pretrained video diffusion model, Mitty leverages strong visual-temporal priors to translate human demonstrations into robot-execution videos without action labels or intermediate abstractions. Demonstration videos are compressed into condition tokens and fused with robot denoising tokens through bidirectional attention during diffusion. To mitigate paired-data scarcity, we also develop an automatic synthesis pipeline that produces high-quality human-robot pairs from large egocentric datasets. Experiments on Human2Robot and EPIC-Kitchens show that Mitty delivers state-of-the-art results, strong generalization to unseen environments, and new insights for scalable robot learning from human observations.
Abstract:Achieving truly adaptive embodied intelligence requires agents that learn not just by imitating static demonstrations, but by continuously improving through environmental interaction, which is akin to how humans master skills through practice. Vision-Language-Action (VLA) models have advanced robotic manipulation by leveraging large language models, yet remain fundamentally limited by Supervised Finetuning (SFT): requiring hundreds of demonstrations per task, rigidly memorizing trajectories, and failing to adapt when deployment conditions deviate from training. We introduce EVOLVE-VLA, a test-time training framework enabling VLAs to continuously adapt through environment interaction with minimal or zero task-specific demonstrations. The key technical challenge is replacing oracle reward signals (unavailable at test time) with autonomous feedback. We address this through a learned progress estimator providing dense feedback, and critically, we design our framework to ``tame'' this inherently noisy signal via two mechanisms: (1) an accumulative progress estimation mechanism smoothing noisy point-wise estimates, and (2) a progressive horizon extension strategy enabling gradual policy evolution. EVOLVE-VLA achieves substantial gains: +8.6\% on long-horizon tasks, +22.0\% in 1-shot learning, and enables cross-task generalization -- achieving 20.8\% success on unseen tasks without task-specific demonstrations training (vs. 0\% for pure SFT). Qualitative analysis reveals emergent capabilities absent in demonstrations, including error recovery and novel strategies. This work represents a critical step toward VLAs that truly learn and adapt, moving beyond static imitation toward continuous self-improvements.
Abstract:Recent advances in diffusion models have greatly improved image generation and editing, yet generating or reconstructing layered PSD files with transparent alpha channels remains highly challenging. We propose OmniPSD, a unified diffusion framework built upon the Flux ecosystem that enables both text-to-PSD generation and image-to-PSD decomposition through in-context learning. For text-to-PSD generation, OmniPSD arranges multiple target layers spatially into a single canvas and learns their compositional relationships through spatial attention, producing semantically coherent and hierarchically structured layers. For image-to-PSD decomposition, it performs iterative in-context editing, progressively extracting and erasing textual and foreground components to reconstruct editable PSD layers from a single flattened image. An RGBA-VAE is employed as an auxiliary representation module to preserve transparency without affecting structure learning. Extensive experiments on our new RGBA-layered dataset demonstrate that OmniPSD achieves high-fidelity generation, structural consistency, and transparency awareness, offering a new paradigm for layered design generation and decomposition with diffusion transformers.




Abstract:Robots that learn manipulation skills from everyday human videos could acquire broad capabilities without tedious robot data collection. We propose a video-to-video translation framework that converts ordinary human-object interaction videos into motion-consistent robot manipulation videos with realistic, physically grounded interactions. Our approach does not require any paired human-robot videos for training only a set of unpaired robot videos, making the system easy to scale. We introduce a transferable representation that bridges the embodiment gap: by inpainting the robot arm in training videos to obtain a clean background and overlaying a simple visual cue (a marker and arrow indicating the gripper's position and orientation), we can condition a generative model to insert the robot arm back into the scene. At test time, we apply the same process to human videos (inpainting the person and overlaying human pose cues) and generate high-quality robot videos that mimic the human's actions. We fine-tune a SOTA video diffusion model (Wan 2.2) in an in-context learning manner to ensure temporal coherence and leveraging of its rich prior knowledge. Empirical results demonstrate that our approach achieves significantly more realistic and grounded robot motions compared to baselines, pointing to a promising direction for scaling up robot learning from unlabeled human videos. Project page: https://showlab.github.io/H2R-Grounder/
Abstract:Computer-Use Agents (CUA) are becoming increasingly capable of autonomously operating digital environments through Graphical User Interfaces (GUI). Yet, most GUI remain designed primarily for humans--prioritizing aesthetics and usability--forcing agents to adopt human-oriented behaviors that are unnecessary for efficient task execution. At the same time, rapid advances in coding-oriented language models (Coder) have transformed automatic GUI design. This raises a fundamental question: Can CUA as judges to assist Coder for automatic GUI design? To investigate, we introduce AUI-Gym, a benchmark for Automatic GUI development spanning 52 applications across diverse domains. Using language models, we synthesize 1560 tasks that simulate real-world scenarios. To ensure task reliability, we further develop a verifier that programmatically checks whether each task is executable within its environment. Building on this, we propose a Coder-CUA in Collaboration framework: the Coder acts as Designer, generating and revising websites, while the CUA serves as Judge, evaluating functionality and refining designs. Success is measured not by visual appearance, but by task solvability and CUA navigation success rate. To turn CUA feedback into usable guidance, we design a CUA Dashboard that compresses multi-step navigation histories into concise visual summaries, offering interpretable guidance for iterative redesign. By positioning agents as both designers and judges, our framework shifts interface design toward agent-native efficiency and reliability. Our work takes a step toward shifting agents from passive use toward active participation in digital environments. Our code and dataset are available at https://github.com/showlab/AUI.
Abstract:Recent advancements in GUI agents have significantly expanded their ability to interpret natural language commands to manage software interfaces. However, acquiring GUI data remains a significant challenge. Existing methods often involve designing automated agents that browse URLs from the Common Crawl, using webpage HTML to collect screenshots and corresponding annotations, including the names and bounding boxes of UI elements. However, this method is difficult to apply to desktop software or some newly launched websites not included in the Common Crawl. While we expect the model to possess strong generalization capabilities to handle this, it is still crucial for personalized scenarios that require rapid and perfect adaptation to new software or websites. To address this, we propose an automated data collection method with minimal annotation costs, named Auto-Explorer. It incorporates a simple yet effective exploration mechanism that autonomously parses and explores GUI environments, gathering data efficiently. Additionally, to assess the quality of exploration, we have developed the UIXplore benchmark. This benchmark creates environments for explorer agents to discover and save software states. Using the data gathered, we fine-tune a multimodal large language model (MLLM) and establish a GUI element grounding testing set to evaluate the effectiveness of the exploration strategies. Our experiments demonstrate the superior performance of Auto-Explorer, showing that our method can quickly enhance the capabilities of an MLLM in explored software.